初中高中九科視頻課程1200分鐘
初一網課強化班輔導課程免費領課 初二網課強化班輔導課程免費領課 初三網課強化班輔導課程免費領課
高一網課強化班輔導課程免費領課 高二網課強化班輔導課程免費領課 高三網課強化班輔導課程免費領課

高一網絡課堂哪個好

發布于:2022-04-01 14:35:03

高一網絡課堂哪個好,高中學生可以報一個簡單網網課。

高一數學:知識點總結(4)

8.函數的奇偶性

(1)偶函數

一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數.

(2).奇函數

一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=-f(x),那么f(x)就叫做奇函數.

注意:1函數是奇函數或是偶函數稱為函數的奇偶性,函數的奇偶性是函數的整體性質;函數可能沒有奇偶性,也可能既是奇函數又是偶函數。

2由函數的奇偶性定義可知,函數具有奇偶性的一個必要條件是,對于定義域內的任意一個x,則-x也一定是定義域內的一個自變量(即定義域關于原點對稱).

(3)具有奇偶性的函數的圖象的特征

偶函數的圖象關于y軸對稱;奇函數的圖象關于原點對稱.

總結:利用定義判斷函數奇偶性的格式步驟:1首先確定函數的定義域,并判斷其定義域是否關于原點對稱;2確定f(-x)與f(x)的關系;3作出相應結論:若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數;若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數.

注意?。汉瘮刀x域關于原點對稱是函數具有奇偶性的必要條件.首先看函數的定義域是否關于原點對稱,若不對稱則函數是非奇非偶函數.若對稱,(1)再根據定義判定;(2)有時判定f(-x)=±f(x)比較困難,可考慮根據是否有f(-x)±f(x)=0或f(x)/f(-x)=±1來判定;(3)利用定理,或借助函數的圖象判定.

9、函數的解析表達式

(1).函數的解析式是函數的一種表示方法,要求兩個變量之間的函數關系時,一是要求出它們之間的對應法則,二是要求出函數的定義域.

(2).求函數的解析式的主要方法有:待定系數法、換元法、消參法等,如果已知函數解析式的構造時,可用待定系數法;已知復合函數f[g(x)]的表達式時,可用換元法,這時要注意元的取值范圍;當已知表達式較簡單時,也可用湊配法;若已知抽象函數表達式,則常用解方程組消參的方法求出f(x)

10.函數最大(小)值

1利用二次函數的性質(配方法)求函數的最大(小)值2利用圖象求函數的最大(小)值3利用函數單調性的判斷函數的最大(小)值:如果函數y=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函數y=f(x)在x=b處有最大值f(b);如果函數y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函數y=f(x)在x=b處有最小值f(b);

第二章基本初等函數

一、指數函數

(一)指數與指數冪的運算

1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈*.

當是奇數時,正數的次方根是一個正數,負數的次方根是一個負數.此時,的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(radicalexponent),叫做被開方數(radicand).

當是偶數時,正數的次方根有兩個,這兩個數互為相反數.此時,正數的正的次方根用符號表示,負的次方根用符號-表示.正的次方根與負的次方根可以合并成±(>0).由此可得:負數沒有偶次方根;0的任何次方根都是0,記作。

注意:當是奇數時,,當是偶數時,

2.分數指數冪

正數的分數指數冪的意義,規定:

0的正分數指數冪等于0,0的負分數指數冪沒有意義

指出:規定了分數指數冪的意義后,指數的概念就從整數指數推廣到了有理數指數,那么整數指數冪的運算性質也同樣可以推廣到有理數指數冪.

3.實數指數冪的運算性質

(二)指數函數及其性質

1、指數函數的概念:一般地,函數叫做指數函數(exponential),其中x是自變量,函數的定義域為R.

注意:指數函數的底數的取值范圍,底數不能是負數、零和1.

以上就是關于高一網絡課堂哪個好的詳細介紹,更多與高中輔導有關的內容,請繼續關注數豆子。

簡單學習網 簡單學習網 - 有影響力的中學互動網校

截至目前,全國各省市的正式注冊學員近2300萬,從網校走出265位中高考高分學員,萬名學員被北大清華、985、211類院校錄取,互動網課連續10年學員滿意度超過96%。

免費試學

高中網課免費在線試聽

他們的成功,你也可以復制

網校學員成績提升心得

簡單學習網初高中輔導五步法

初高中網課輔導老師介紹

相關課程
熱門課程
日韩成a人片在线观看日本