高二數學必修視頻
發布于:2022-04-02 10:39:52高二數學必修視頻,高二輔導推薦簡單學習網。
高二數學知識點復習:函數方程思想講解
函數方程思想就是用函數、方程的觀點和方法處理變量或未知數之間的關系,從而解決問題的一種思維方式,是很重要的數學思想。
1.函數思想:
把某變化過程中的一些相互制約的變量用函數關系表達出來,并研究這些量間的相互制約關系,最后解決問題,這就是函數思想;
2.應用函數思想解題,確立變量之間的函數關系是一關鍵步驟,大體可分為下面兩個步驟:
(1)根據題意建立變量之間的函數關系式,把問題轉化為相應的函數問題;(2)根據需要構造函數,利用函數的相關知識解決問題;(3)方程思想:在某變化過程中,往往需要根據一些要求,確定某些變量的值,這時常常列出這些變量的方程或(方程組),通過解方程(或方程組)求出它們,這就是方程思想;
3.函數與方程是兩個有著密切聯系的數學概念,它們之間相互滲透,很多方程的問題需要用函數的知識和方法解決,很多函數的問題也需要用方程的方法的支援,函數與方程之間的辯證關系,形成了函數方程思想
函數思想在解題中的應用主要表現在兩個方面:一是借助有關初等函數的性質,解有關求值,解(證)不等式,解方程以及討論參數的取值范圍等問題:二是在問題的研究中,通過建立函數關系式或構造中間函數,把所研究的問題轉化為討論函數的有關性質,達到化難為易,化繁為簡的目的.函數與方程的思想是中學數學的基本思想,也是歷年高考的重點.
1.函數的思想,
是用運動和變化的觀點,分析和研究數學中的數量關系,建立函數關系或構造函數,運用函數的圖像和性質去分析問題,轉化問題,從而使問題獲得解決.
2.方程的思想,
就是分析數學問題中變量間的等量關系,建立方程或方程組,或者構造方程,通過解方程或方程組,或者運用方程的性質去分析,轉化問題,使問題獲得解決.方程思想是動中求靜,研究運動中的等量關系;
3.函數方程思想的幾種重要形式
(1)函數和方程是密切相關的,對于函數y=f(x),當y=0時,就轉化為方程f(x)=0,也可以把函數式y=f(x)看做二元方程y-f(x)=0.
(2)函數與不等式也可以相互轉化,對于函數y=f(x),當y>0時,就轉化為不等式f(x)>0,借助于函數圖像與性質解決有關問題,而研究函數的性質,也離不開解不等式;
(3)數列的通項或前n項和是自變量為正整數的函數,用函數的觀點處理數列問題十分重要;
(4)函數f(x)=(1+x)^n(n∈N*)與二項式定理是密切相關的,利用這個函數用賦值法和比較系數法可以解決很多二項式定理的問題;
(5)解析幾何中的許多問題,例如直線和二次曲線的位置關系問題,需要通過解二元方程組才能解決,涉及到二次方程與二次函數的有關理論;
(6)立體幾何中有關線段,角,面積,體積的計算,經常需要運用布列方程或建立函數表達式的方法加以解決.
以上就是關于高二數學必修視頻的詳細介紹,更多與高二輔導有關的內容,請繼續關注數豆子。